Problem Sheet 5

Problem 1

(a) Let $f \in \mathbb{Z}[T]$ be a non-constant polynomial. Show that there are infinitely many primes p such that f has a zero modulo p.
Hint: One possibility is to consider the values $f(n!f(0)) / f(0)$ for n large.
(b) Prove that, given an integer N, there are infinitely many primes $p \equiv 1 \bmod N$.

Problem 2

Prove that a number field K / \mathbb{Q} is unramified over a prime p if and only if its Galois closure K^{Gal} is.

Problem 3

Let K / \mathbb{Q} be a number field of degree n such that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$ is generated by a single element. Let f be the minimal polynomial of α and denote its roots in $\overline{\mathbb{Q}}$ by $\alpha=\alpha_{1}, \ldots, \alpha_{n}$.
(a) Verify that

$$
\frac{1}{f(x)}=\sum_{i=1}^{n} \frac{1}{f^{\prime}\left(\alpha_{i}\right)\left(x-\alpha_{i}\right)}
$$

Hint: Show that $1-f(T) \sum_{i} 1 /\left(f^{\prime}\left(\alpha_{i}\right)\left(x-\alpha_{i}\right)\right)$ is a polynomial of degree $n-1$ with n roots.
(b) Prove that

$$
\operatorname{Tr}_{K / \mathbb{Q}}\left(\frac{\alpha^{i}}{f^{\prime}(\alpha)}\right)= \begin{cases}0 & 0 \leq i \leq n-2 \\ 1 & i=n-1\end{cases}
$$

Hint: Expand the identity from a) as power series in $1 / x$ and compare coefficients.
(c) Conclude that $\delta_{K / \mathbb{Q}}^{-1}$ is simply $f^{\prime}(\alpha)^{-1} \mathcal{O}_{K}$. In particular, it is a principal ideal.

Problem 4

Let A be a Dedekind ring and M a finitely generated torsion-free A-module of generic rank n. (The assumptions mean $a m=0 \Rightarrow a=0$ for all $0 \neq m \in M$ and $\operatorname{dim}_{K}\left(K \otimes_{A} M\right)=n$, where $K=\operatorname{Frac}(A)$.)
(a) Prove that M is projective, i.e. that any surjection $A^{m} \rightarrow M$ splits.
(b) Show that there is an isomorphism

$$
M \cong \mathfrak{a}_{1} \oplus \ldots \oplus \mathfrak{a}_{n}
$$

for fractional ideals $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n}$ of A.

